Exercise 3.4.6

There are some things wrong in the following demonstration. Find the mistakes and correct them.
In this exercise we attempt to obtain the Fourier cosine coefficients of e^{x} :

$$
\begin{equation*}
e^{x}=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L} . \tag{3.4.22}
\end{equation*}
$$

Differentiating yields

$$
e^{x}=-\sum_{n=1}^{\infty} \frac{n \pi}{L} A_{n} \sin \frac{n \pi x}{L},
$$

the Fourier sine series of e^{x}. Differentiating again yields

$$
\begin{equation*}
e^{x}=-\sum_{n=1}^{\infty}\left(\frac{n \pi}{L}\right)^{2} A_{n} \cos \frac{n \pi x}{L} . \tag{3.4.23}
\end{equation*}
$$

Since Equations (3.4.22) and (3.4.23) give the Fourier cosine series of e^{x}, they must be identical. Thus,

$$
\left.\begin{array}{l}
A_{0}=0 \\
A_{n}=0
\end{array}\right\} \quad \text { (obviously wrong!). }
$$

By correcting the mistakes, you should be able to obtain A_{0} and A_{n} without using the typical technique, that is, $A_{n}=2 / L \int_{0}^{L} e^{x} \cos n \pi x / L d x$.

Solution

e^{x} is a continuous function on $0 \leq x \leq L$, so it has a Fourier cosine series expansion.

$$
\begin{equation*}
e^{x}=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L} \tag{1}
\end{equation*}
$$

Because e^{x} is continuous, there's no problem differentiating its cosine series with respect to x term by term.

$$
e^{x}=\sum_{n=1}^{\infty}\left(-\frac{n \pi}{L} A_{n}\right) \sin \frac{n \pi x}{L}
$$

This is now a sine series, so differentiating term by term is not justified because $e^{0} \neq 0$ and $e^{L} \neq 0$. Rather, use Eq. 3.4.13 on page 117 .

$$
\begin{equation*}
e^{x}=\frac{1}{L}\left(e^{L}-1\right)+\sum_{n=1}^{\infty}\left[\frac{n \pi}{L}\left(-\frac{n \pi}{L} A_{n}\right)+\frac{2}{L}\left[(-1)^{n} e^{L}-1\right]\right] \cos \frac{n \pi x}{L} \tag{2}
\end{equation*}
$$

Comparing equations (1) and (2) gives

$$
\begin{aligned}
& A_{0}=\frac{1}{L}\left(e^{L}-1\right) \\
& A_{n}=\frac{n \pi}{L}\left(-\frac{n \pi}{L} A_{n}\right)+\frac{2}{L}\left[(-1)^{n} e^{L}-1\right] \quad \rightarrow \quad A_{n}=\frac{2 L\left[(-1)^{n} e^{L}-1\right]}{n^{2} \pi^{2}+L^{2}} .
\end{aligned}
$$

