Haberman Applied PDEs 5e: Section 3.4 - Exercise 3.4.6 Page 1 of 1

Exercise 3.4.6

There are some things wrong in the following demonstration. Find the mistakes and correct them.
In this exercise we attempt to obtain the Fourier cosine coefficients of e”:
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the Fourier sine series of . Differentiating again yields
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Since Equations (3.4.22) and (3.4.23) give the Fourier cosine series of e®, they must be identical.
Thus,
Ao =0

A, — O} (obviously wrong!).

By correcting the mistakes, you should be able to obtain Ag and A, without using the typical
technique, that is, A, = 2/L fOL e® cosnmx/L dx.

Solution

e” is a continuous function on 0 < x < L, so it has a Fourier cosine series expansion.
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Because e® is continuous, there’s no problem differentiating its cosine series with respect to x
term by term.
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This is now a sine series, so differentiating term by term is not justified because e? # 0 and
el #£ 0. Rather, use Eq. 3.4.13 on page 117.
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Comparing equations (1) and (2) gives

Ao = Z(eL - 1)
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